Here you will find daily news and tutorials about R, contributed by over 573 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

Arecent question on X validated ended up being quite interesting! The model under consideration is made of parallel Markov chains on a finite state space, all with the same Markov transition matrix, M, which turns into a hidden Markov model when the only summary available is the number of chains in a given state at a given time. When writing down the EM algorithm, the E step involves the expected number of moves from a given state to a given state at a given time. The conditional distribution of those numbers of chains is a product of multinomials across times and starting states, with no Markov structure since the number of chains starting from a given state is known at each instant. Except that those multinomials are constrained by the number of “arrivals” in each state at the next instant and that this makes the computation of the expectation intractable, as far as I can see.

A solution by Monte Carlo EM means running the moves for each instant under the above constraints, which is thus a sort of multinomial distribution with fixed margins, enjoying a closed-form expression but for the normalising constant. The direct simulation soon gets too costly as the number of states increases and I thus considered a basic Metropolis move, using one margin (row or column) or the other as proposal, with the correction taken on another margin. This is very basic but apparently enough for the purpose of the exercise. If I find time in the coming days, I will try to look at the ABC resolution of this problem, a logical move when starting from non-sufficient statistics!