Here you will find daily news and tutorials about R, contributed by over 750 bloggers.
There are many ways to follow us - By e-mail:On Facebook: If you are an R blogger yourself you are invited to add your own R content feed to this site (Non-English R bloggers should add themselves- here)

Inspired from a mail that came along the previous random generation post the following question rised :

How to draw random variates from the Von Mises distribution?

First of all let’s check the pdf of the probability rule, it is , for .

Ok, I admit that Bessels functions can be a bit frightening, but there is a work around we can do. The solution is a Metropolis algorithm simulation. It is not necessary to know the normalizing constant, because it will cancel in the computation of the ratio. The following code is adapted from James Gentle’s notes on Mathematical Statistics .

n <- 1000
x <- rep(NA,n)
a <-1
c <-3
yi <-3
j <-0
i<-2
while (i < n) {
i<-i+1
yip1 <- yi + 2*a*runif(1)- 1
if (yip1 < pi & yip1 > - pi) {
if (exp(c*(cos(yip1)-cos(yi))) > runif(1)) yi <- yip1
else yi <- x[i-1]
x[i] <- yip1
}
}
hist(x,probability=TRUE,fg = gray(0.7), bty="7")
lines(density(x,na.rm=TRUE),col="red",lwd=2)

Related

To leave a comment for the author, please follow the link and comment on their blog: Stats raving mad » R.