# a Galton-Watson riddle

December 29, 2016
By

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

The Riddler of this week has an extinction riddle which summarises as follows:

One observes a population of N individuals, each with a probability of 10⁻⁴ to kill the observer each day. From one day to the next, the population decreases by one individual with probability

K√N 10⁻⁴

What is the value of K that leaves the observer alive with probability ½?

Given the sequence of population sizes N,N¹,N²,…, the probability to remain alive is

$(1-10^{-4})^{N+N^1+\ldots}$

where the sum stops with the (sure) extinction of the population. Which is the moment generating function of the sum. At x=1-10⁻⁴. Hence the problem relates to a Galton-Watson extinction problem. However, given the nature of the extinction process I do not see a way to determine the distribution of the sum, except by simulation. Which returns K=26.3 for the specific value of N=9.

```N=9
K=3*N
M=10^4
vals=rep(0,M)
targ=0
ite=1
while (abs(targ-.5)>.01){

for (t in 1:M){
gen=vals[t]=N
while (gen>0){
gen=gen-(runif(1)
Filed under: R, Travel Tagged: Francis Galton, Galton-Watson extinction, R, The Riddler

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' };

(function(d, t) {
var s = d.createElement(t); s.type = 'text/javascript'; s.async = true;
var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r);
}(document, 'script'));

Related
ShareTweet

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or  here if you don't.