Using Eigen for eigenvalues

January 11, 2013
By

(This article was first published on Rcpp Gallery, and kindly contributed to R-bloggers)

A previous post showed how to compute eigenvalues using the Armadillo library via RcppArmadillo.

Here, we do the same using Eigen and the RcppEigen package.

#include <RcppEigen.h>

// [[Rcpp::depends(RcppEigen)]]

using Eigen::Map;               	// 'maps' rather than copies 
using Eigen::MatrixXd;                  // variable size matrix, double precision
using Eigen::VectorXd;                  // variable size vector, double precision
using Eigen::SelfAdjointEigenSolver;    // one of the eigenvalue solvers

// [[Rcpp::export]]
VectorXd getEigenValues(Map<MatrixXd> M) {
    SelfAdjointEigenSolver<MatrixXd> es(M);
    return es.eigenvalues();
}

We can illustrate this easily via a random sample matrix.

set.seed(42)
X <- matrix(rnorm(4*4), 4, 4)
Z <- X %*% t(X)

getEigenValues(Z)
[1]  0.3319  1.6856  2.4099 14.2100

In comparison, R gets the same results (in reverse order) and also returns the eigenvectors.

eigen(Z)
$values
[1] 14.2100  2.4099  1.6856  0.3319

$vectors
         [,1]     [,2]    [,3]     [,4]
[1,]  0.69988 -0.55799  0.4458 -0.00627
[2,] -0.06833 -0.08433  0.0157  0.99397
[3,]  0.44100 -0.15334 -0.8838  0.03127
[4,]  0.55769  0.81118  0.1413  0.10493

Eigen has other a lot of other decompositions, see its documentation for more details.

To leave a comment for the author, please follow the link and comment on his blog: Rcpp Gallery.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.