(This article was first published on

**Ripples**, and kindly contributed to R-bloggers)There is geometry in the humming of the strings, there is music in the spacing of the spheres (Pythagoras)

Spring is here and I will be on holiday next week. I cannot be more happy! It is time to celebrate so I have drawn another fractal. It is called the *Pythagorean Tree*:

Here you have the code. See you soon:

library("grid") l=0.15 #Length of the square grid.newpage() gr <- rectGrob(width=l, height=l, name="gr") #Basic Square pts <- data.frame(level=1, x=0.5, y=0.1, alfa=0) #Centers of the squares for (i in 2:10) #10=Deep of the fractal. Feel free to change it { df<-pts[pts$level==i-1,] for (j in 1:nrow(df)) { pts <- rbind(pts, c(i, df[j,]$x-2*l*((1/sqrt(2))^(i-1))*sin(df[j,]$alfa+pi/4)-0.5*l*((1/sqrt(2))^(i-2))*sin(df[j,]$alfa+pi/4-3*pi/4), df[j,]$y+2*l*((1/sqrt(2))^(i-1))*cos(df[j,]$alfa+pi/4)+0.5*l*((1/sqrt(2))^(i-2))*cos(df[j,]$alfa+pi/4-3*pi/4), df[j,]$alfa+pi/4)) pts <- rbind(pts, c(i, df[j,]$x-2*l*((1/sqrt(2))^(i-1))*sin(df[j,]$alfa-pi/4)-0.5*l*((1/sqrt(2))^(i-2))*sin(df[j,]$alfa-pi/4+3*pi/4), df[j,]$y+2*l*((1/sqrt(2))^(i-1))*cos(df[j,]$alfa-pi/4)+0.5*l*((1/sqrt(2))^(i-2))*cos(df[j,]$alfa-pi/4+3*pi/4), df[j,]$alfa-pi/4)) } } for (i in 1:nrow(pts)) { grid.draw(editGrob(gr, vp=viewport(x=pts[i,]$x, y=pts[i,]$y, w=((1/sqrt(2))^(pts[i,]$level-1)), h=((1/sqrt(2))^(pts[i,]$level-1)), angle=pts[i,]$alfa*180/pi), gp=gpar(col=0, lty="solid", fill=rgb(139*(nrow(pts)-i)/(nrow(pts)-1), (186*i+69*nrow(pts)-255)/(nrow(pts)-1), 19*(nrow(pts)-i)/(nrow(pts)-1), alpha= (-110*i+200*nrow(pts)-90)/(nrow(pts)-1), max=255)))) }

To

**leave a comment**for the author, please follow the link and comment on his blog:**Ripples**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...