The ‘R’ in Human [R]esources (or: a very brief introduction to the statistical package ‘R’ for HR)

December 21, 2011

(This article was first published on » Rstat, and kindly contributed to R-bloggers)

I studied psychology in Marburg (Germany). At university we exclusively used SPSS. The courses were among my classmates usually not the most popular. After over 10 years in management consulting, I have noticed that little has changed to this. It’s a shame because a lot of interesting data in consulting firms and HR departments remain unused.

In my role as managing director of kibit GmbH, I have placed the focus of the company on ”R” (instead of SPSS). We use R e.g. for the evaluation of employee surveys and 360 degree feedback. In particular, the possibilities of automation, the outstanding graphical capabilities and the reproducibility of our work have been decisive. Meanwhile, we have changed to RStudio as a graphical development environment (GUI).

Here in my blog I will publish in the future at irregular intervals interesting code examples (with links to HR). Perhaps some readers feel encouraged to give R a try. Well, if so, what should they do?

  1. install the required software (R & RStudio)
  2. try the code on the bottom of this page

R is available for Mac, Windows and Linux. Installation is not complicated. When you first launch RStudio, you will be greeted by an interface that looks similar to this:

Screenshot: RStudio

R is a programming language. As with other languages, also applies here: practice makes perfect. I personally think the website Quick-R, and this manual are good points to start.

Now we open a new window (File -> New -> R script) and copy the following code into it. Then we select everything and press the run button.

assessors <- c(8, 10, 8, 5, 4, 7, 10, 6)
names(assessors) <- c("Fischer", "Miller", "Mayer", "Master", "Hunter", "Smith", "Kim", "Baker")
barplot(sort(assessors, decreasing = TRUE), main = "assessment center per year", col = hcl(h = seq(0, 240, by = 30)), horiz = TRUE, las=1)

In line 1 we define eight values, which we assign certain people in line 2. The third line generates the graph. If all goes well, we get the following result:
There is even an easier way to try out my little example. Insert the code on It’s magic!

To leave a comment for the author, please follow the link and comment on their blog: » Rstat. offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , ,

Comments are closed.


Mango solutions

RStudio homepage

Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



CRC R books series

Six Sigma Online Training

Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)