**Timely Portfolio**, and kindly contributed to R-bloggers)

I struggled with whether or not I should even post this. It is raw and ugly, but it might help somebody out there. I might use this as a basis for some more gridSVG posts, but I do not think I have the motivation to finish the analysis.

Code:

require(latticeExtra)

require(quantmod)

require(PerformanceAnalytics)

getSymbols(“SP500″,src=”FRED”)

US10 <- na.omit(getSymbols(“DGS10″,src=”FRED”,auto.assign=FALSE))

stocksBonds <- na.omit(

merge(

lag(SP500,k=-100)/SP500-1, #forward 100 day sp500 perf

US10 / runMean(US10,n=250) – 1, #us10 yield – 250 day average

SP500

)

)

#get the decade

stocksBonds$decade = as.numeric(substr(index(stocksBonds),1,3)) * 10

#name columns

colnames(stocksBonds) <- c(“sp500″,”us10″,”SP500″,”decade”)

#get a color ramp for our change in us10 year yields

linecolors <- colorRamp(

c(“red”,”green”),

interpolate=”linear”,

space=”rgb”

)((stocksBonds[,2]+0.5))

xyplot(

stocksBonds[,1],

col=rgb(linecolors,max=255),

type=”p”,pch=19,cex=0.5,

main = “Stocks 100d Forward Performance”

)

xyplot(

sp500 ~ us10 | factor(decade),

groups = decade,

data = as.data.frame(stocksBonds),

pch=19,

cex = 0.5,

scales = list(

x = list(tck=c(1,0),alternating=1)

),

layout=c(6,1),

main = “S&P 500 Forward Performance vs US 10y Change in Yields”,

ylab = “S&P Forward Performance (100d)”,

xlab = “US 10y Yields – 250d Avg”

) +

latticeExtra::layer(panel.abline(h=0,col=”gray”,lty=2)) +

latticeExtra::layer(panel.abline(v=0,col=”gray”,lty=2)) +

xyplot(

sp500 ~ us10 | factor(decade),

col=”gray”,

data = as.data.frame(stocksBonds),

panel = panel.lmline)

require(ggplot2)

ggplot(data = data.frame(stocksBonds), aes(y=sp500, x= us10,colour=decade))+

geom_point()+facet_wrap(~decade,ncol=6)+geom_smooth()

charts.PerformanceSummary(

merge(

ROC(stocksBonds[,3],n=1,type=”discrete”),

ROC(stocksBonds[,3],n=1,type=”discrete”) * (stocksBonds[,2]>0)

),

main=”S&P 500 | if Bonds – Mean(250d) > 0″

)

**leave a comment**for the author, please follow the link and comment on their blog:

**Timely Portfolio**.

R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...