I bought an Android phone, nothing fancy just my first foray in the smartphone world, which is a big change coming from the dumb phone world(*). Everything is different and I am back at being a newbie; this is what … Continue reading →

I bought an Android phone, nothing fancy just my first foray in the smartphone world, which is a big change coming from the dumb phone world(*). Everything is different and I am back at being a newbie; this is what … Continue reading →

In the Maximum Loss and Mean-Absolute Deviation risk measures, and Expected shortfall (CVaR) and Conditional Drawdown at Risk (CDaR) posts I started the discussion about alternative risk measures we can use to construct efficient frontier. Another alternative risk measure I want to discuss is Downside Risk. In the traditional mean-variance optimization both returns above and

Everyday, a poor soul tries to understand copulas by reading the corresponding Wikipedia page, and gives up in despair. The incomprehensible mess that one finds there gives the impression that copulas are about as accessible as tensor theory, which is a shame, because they are actually a very nice tool. The only prerequisite is knowing

The “Minimum Correlation Algorithm” is a term I stumbled at the CSS Analytics blog. This is an Interesting Risk Measure that in my interpretation means: minimizing Average Portfolio Correlation with each Asset Class for a given level of return. One might try to use Correlation instead of Covariance matrix in mean-variance optimization, but this approach,

In the Maximum Loss and Mean-Absolute Deviation risk measures post I started the discussion about alternative risk measures we can use to construct efficient frontier. Another alternative risk measures I want to discuss are Expected shortfall (CVaR) and Conditional Drawdown at Risk (CDaR). I will use methods presented in Comparative Analysis of Linear Portfolio Rebalancing

The Minimum Investment and Number of Assets Portfolio Cardinality Constraints are practical constraints that are not easily incorporated in the standard mean-variance optimization framework. To help us impose these real life constraints, I will introduce extra binary variables and will use mixed binary linear and quadratic programming solvers. Let’s continue with our discussion from Introduction

e-mails with the latest R posts.

(You will not see this message again.)