**I** reran the program checking the distribution of the digits over 9 “diagonals” (obtained by acceptable permutations of rows and column) and this test again results in mostly small p-values. Over a million iterations, and the nine (dependent) diagonals, four p-values were below 0.01, three were below 0.1, and two were above (0.21 and 0.42). So I conclude in a discrepancy between my (full) sudoku generator and the hypothesised distribution of the (number of different) digits over the diagonal. Assuming my generator is a faithful reproduction of the one used in the paper by Newton and DeSalvo, this discrepancy suggests that their distribution over the sudoku grids do not agree with this diagonal distribution, either because it is actually different from uniform or, more likely, because the uniform distribution I use over the (groups of three over the) diagonal is not compatible with a uniform distribution over all sudokus…

Filed under: R, Statistics Tagged: combinatorics, entropy, Kullback, Monte Carlo, p-value, simulation, sudoku, uniformity

*Related*

To

**leave a comment** for the author, please follow the link and comment on his blog:

** Xi'an's Og » R**.

R-bloggers.com offers

**daily e-mail updates** about

R news and

tutorials on topics such as: visualization (

ggplot2,

Boxplots,

maps,

animation), programming (

RStudio,

Sweave,

LaTeX,

SQL,

Eclipse,

git,

hadoop,

Web Scraping) statistics (

regression,

PCA,

time series,

trading) and more...

If you got this far, why not

__subscribe for updates__ from the site? Choose your flavor:

e-mail,

twitter,

RSS, or

facebook...

**Tags:** combinatorics, entropy, Kullback, Monte Carlo, P-value, R, Simulation, statistics, sudoku, uniformity