Recently talking to a colleague, had contact with a problem that I had never worked with before: modeling with genetic The post Genetic data, large matrices and glmnet() appeared first on Flavio Barros .

The probably most frequent criticism of Bayesian statistics sounds something like “It’s all subjective – with the ‘right’ prior, you can get any result you want.”. In order to approach this criticism it has been suggested to do a sensitivity analysis (or robustness analysis), that demonstrates how the choice of priors affects the conclusions drawn

(This article was first published on Digithead's Lab Notebook, and kindly contributed to R-bloggers) Now that I'm ridiculously behind in the Stanford Online Statistical Learning class, I thought it would be fun to try to reproduce the figure on page 36 of the slides from chapter 3 or page 81 of the book. The result is a curvaceous surface...

I recently had the pleasure in participating in the 2014 WCMC Statistics for Metabolomics Short Course. The course was hosted by the NIH West Coast Metabolomics Center and focused on statistical and multivariate strategies for metabolomic data analysis. A variety of topics were covered using 8 hands on tutorials which focused on: data quality overview

As a data scientist I have seen variations of principal component analysis and factor analysis so often blindly misapplied and abused that I have come to think of the technique as unprincipled component analysis. PCA is a good technique often used to reduce sensitivity to overfitting. But this stated design intent leads many to (falsely) Related posts:

ShareLaTeX (click here to register a free account) is a wonderful and reliable on-line editor for writing and compiling LaTeX documents “in the cloud” as well as working together in real-time (imagine Google Docs supporting LaTeX => you get ShareLaTeX).…Read more ›

I've (passively) been keeping meticulous records of almost every song I've listened to since January of 2008. Since I opened my last.fm account 6 years ago, they've accumulated a massive detailed dataset of the 107,222 songs I've listened to since then. The best thing is that they're willing to share this data with me! I »more

As I have described before, Linear Discriminant Analysis (LDA) can be seen from two different angles. The first classify a given sample of predictors to the class with highest posterior probability . It minimizes the total probability of misclassification. To compute it uses Bayes’ rule and assume that follows a Gaussian distribution with class-specific mean

I always thought that there were some kind of schools in statistics, areas (not to say universities or laboratories) where people had common interest in term of statistical methodology. Like people with strong interest in extreme values, or in Lévy Processes. I wanted to check this point so I did extract information about articles puslished in about 35 journals...