The previous post outlined the general strategy of writing a MH within Gibbs sampler by breaking the code into two levels: a high level shell and a series of lower-level samplers which do the actual work. This post discusses the … Continue reading →

Introduction Continuing my recent series on exploratory data analysis (EDA), and following up on the last post on the conceptual foundations of empirical cumulative distribution functions (CDFs), this post shows how to plot them in R. (Previous posts in this series on EDA include descriptive statistics, box plots, kernel density estimation, and violin plots.) I

Introduction Continuing my recent series on exploratory data analysis (EDA), this post focuses on the conceptual foundations of empirical cumulative distribution functions (CDFs); in a separate post, I will show how to plot them in R. (Previous posts in this series include descriptive statistics, box plots, kernel density estimation, and violin plots.) To give you

(This article was first published on Learning Data Science , and kindly contributed to R-bloggers) Petit monitoring de notre observatoire des médias sur Twitter.Chez Mediapart : Le Monde Le Figaro Le parisien Vue globaleLe code pour réaliser ce post : To leave a comment for the author, please follow the link and comment on his blog: Learning Data Science...

Last summer, I had some internet connectivity problems. Specifically, I would have massive latency issues that affected my conversations on Skype and my relatively pathetic under the best of circumstances efforts at online gaming. It was driving me up a wall and I couldn't figure it out. It hadn't...

Here is a spot of code to create a series of small multiples for comparing return distributions. You may have spotted this in a presentation I posted about earlier, but I’ve been using it here and there and am finally satisfied that it is a generally useful view, so I functionalized it. When visually comparing