Minimum Correlation Algorithm Speed comparison

September 25, 2012
By

(This article was first published on Systematic Investor » R, and kindly contributed to R-bloggers)

The Minimum Correlation Algorithm is a heuristic method discovered by David Varadi. Below I will benchmark the execution speed of 2 versions of the Minimum Correlation Algorithm versus the traditional minimum variance optimization that relies on solving a quadratic programming problem.

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)

	#*****************************************************************
	# Setup test input assumptions
	#*****************************************************************
	load.packages('quadprog,corpcor')
	
	n = 100
	hist = matrix(rnorm(1000*n), nc=n)
	
	# 0 <= x.i <= 1
	constraints = new.constraints(n, lb = 0, ub = 1)
		constraints = add.constraints(diag(n), type='>=', b=0, constraints)
		constraints = add.constraints(diag(n), type='<=', b=1, constraints)

	# SUM x.i = 1
	constraints = add.constraints(rep(1, n), 1, type = '=', constraints)		
						
	# create historical input assumptions
	ia = list()
		ia$n = n
		ia$risk = apply(hist, 2, sd)
		ia$correlation = cor(hist, use='complete.obs', method='pearson')
		ia$cov = ia$correlation * (ia$risk %*% t(ia$risk))
				
		ia$cov = make.positive.definite(ia$cov, 0.000000001)
		ia$correlation = make.positive.definite(ia$correlation, 0.000000001)
		
	#*****************************************************************
	# Time each Algorithm 
	#*****************************************************************				
	load.packages('rbenchmark')			

	benchmark(
		min.var.portfolio(ia, constraints),
		min.corr.portfolio(ia, constraints),
		min.corr2.portfolio(ia, constraints),
		
		
	columns=c("test", "replications", "elapsed", "relative"),
	order="relative",
	replications=100
	)

I have run the code above for n=10 (10 assets), n=100 (100 assets), n=500 (500 assets), n=1000 (1000 assets)
[Please note that for n=1000 I have only run 5 replication]

n=10 (10 assets)
                      replications elapsed relative
   min.var.portfolio          100    0.02      1.0
 min.corr2.portfolio          100    0.02      1.0
  min.corr.portfolio          100    0.03      1.5


n=100 (100 assets)
                      replications elapsed relative
 min.corr2.portfolio          100    0.07 1.00
  min.corr.portfolio          100    0.25 3.57
   min.var.portfolio          100    0.31 4.42


n=500 (500 assets)
                      replications elapsed  relative
 min.corr2.portfolio          100    2.18  1.00
  min.corr.portfolio          100    9.59  4.39
   min.var.portfolio          100  139.13 63.82


n=1000 (1000 assets) 
                      replications elapsed relative
 min.corr2.portfolio            5    0.25     1.00
  min.corr.portfolio            5    1.39     5.56
   min.var.portfolio            5  113.27   453.08

For small universe (i.e. n ~ 100) all algorithms are fast. But once we attempt to solve 500 or 1000 assets portfolio allocation problem, the minimum variance algorithm is many times slower than the both versions of the minimum correlation algorithm.

So if we are considering a 500 assets weekly back-test for the 10 yrs the run-times in seconds (i.e. 52*10*single tun-time):

                            elapsed
 min.corr2.portfolio          11.3
  min.corr.portfolio          49.8
   min.var.portfolio         723.4

To view the complete source code for this example, please have a look at the bt.mca.speed.test() function in bt.test.r at github.

To leave a comment for the author, please follow the link and comment on their blog: Systematic Investor » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: ,

Comments are closed.

Sponsors

Mango solutions



RStudio homepage



Zero Inflated Models and Generalized Linear Mixed Models with R

Dommino data lab

Quantide: statistical consulting and training



http://www.eoda.de







ODSC

ODSC

CRC R books series





Six Sigma Online Training





Contact us if you wish to help support R-bloggers, and place your banner here.

Never miss an update!
Subscribe to R-bloggers to receive
e-mails with the latest R posts.
(You will not see this message again.)

Click here to close (This popup will not appear again)