Le Monde puzzle [#839]

November 15, 2013
By

(This article was first published on Xi'an's Og » R, and kindly contributed to R-bloggers)

A number theory Le Monde mathematical puzzle whose R coding is not really worth it (and which rings a bell of a similar puzzle in the past, puzzle I cannot trace…):

The set Ξ is made of pairs of integers (x,y) such that (i) both x and y are written as a sum of two squared integers (i.e., are bisquare numbers) and (ii) both xy and (x+y) are bisquare numbers. Why is the product condition superfluous?  For which values of (a,b) is the pair (13a,13b) in Ξ ?

In the first question, the property follows from the fact that the product of two bisquare numbers is again a bisquare number, thank to the remarkable identity

(a²+b²)(c²+d²) = (ac+bd)²+(ad-bc)²

(since the double products cancel). For the second question, once I realised that

13=2²+3²

it followed that any number 13a was the sum of two squares, hence a bisquare number, and thus that the only remaining constraint was that (b≥a)

13a+13b=13a(1+13b-a)

is also bisquare. If b-a is even, this sum is then the product of two bisquare numbers and hence a bisquare number. If b-a is odd, I do not have a general argument to bar the case (it certainly does not work for 13+13² and the four next ones).


Filed under: Books, Kids, R Tagged: Le Monde, mathematical puzzle, number theory

To leave a comment for the author, please follow the link and comment on his blog: Xi'an's Og » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.