(This article was first published on

**NIR-Quimiometría**, and kindly contributed to R-bloggers)*Ver primero:*

**IRIS Flower Data Set (R-001)***See first:*

**IRIS Flower Data Set (R-001)**El comando “summary” nos ayuda a comprender la importancia de cada componente principal:

Los “eigenvalues” son las desviaciones estándar al cuadrado:

Para comprobar la importancia de los eigenvalues, podemos verlos en forma de gráfico:

**> lambda<-eigenvalues**

**> PCs<-c(1,2,3,4)**

**> plot(PCs,lambda)**

*save.image(“H:\\BLOG\\Curso básico Quimiometria\\IRIS\\parte2.RData”)*

To

**leave a comment**for the author, please follow the link and comment on their blog:**NIR-Quimiometría**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...