ggplot2 Version of Figures in “Lattice: Multivariate Data Visualization with R” (Part 13)

August 20, 2009
By

(This article was first published on Learning R, and kindly contributed to R-bloggers)


This is the 13th post in a series attempting to recreate the figures in Lattice: Multivariate Data Visualization with R (R code available here) with ggplot2.

Previous parts in this series: Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, Part 9, Part 10, Part 11, Part 12.


Chapter 14 – New Trellis Displays

Topics covered:

  • Examples of S3 and S4 methods
  • Examples of new high level functions


Figure 14.1

> library(lattice)
> library(ggplot2)
> library(latticeExtra)

lattice

> pl <- xyplot(sunspot.year, aspect = "xy", strip = FALSE,
+     strip.left = TRUE, cut = list(number = 4, overlap = 0.05))
> print(pl)

ggplot2

> sunspot.g <- function(data, number = 4, overlap = 0.05) {
+     data <- as.data.frame(data)
+     data$id <- if (is.ts(data$x))
+         time(data$x)
+     else seq_along(data$x)
+     intrv <- as.data.frame(co.intervals(data$id, number,
+         overlap))
+     x <- sort(unique(data$id))
+     intervals <- ldply(x, function(x) {
+         t(as.numeric(x < intrv$V2 & x > intrv$V1))
+     })
+     tmp <- melt(cbind(x, intervals), id.var = 1)
+     tmp <- tmp[tmp$value > 0, 1:2]
+     tmp <- rename(tmp, c(x = "id"))
+     merge(data, tmp)
+ }
> pg <- ggplot(sunspot.g(sunspot.year), aes(id, x)) + geom_line() +
+     facet_wrap(~variable, scales = "free_x", ncol = 1,
+         as.table = FALSE) + opts(strip.background = theme_blank(),
+     strip.text.x = theme_blank()) + opts(panel.margin = unit(-0.25,
+     "lines")) + xlab("Time")
> print(pg)

chapter14-14_01_l_small.png chapter14-14_01_r_small.png

Figure 14.2

> data(biocAccess, package = "latticeExtra")

lattice

> ssd <- stl(ts(biocAccess$counts[1:(24 * 30 * 2)], frequency = 24),
+     "periodic")
> pl <- xyplot(ssd, xlab = "Time (Days)")
> print(pl)

ggplot2

> time <- data.frame(data = ts(biocAccess$counts[1:(24 *
+     30 * 2)], frequency = 24))
> time$id <- as.numeric(time(time$data))
> time$data <- as.numeric(time$data)
> time.series <- as.data.frame(ssd$time.series)
> time.series <- cbind(time, time.series)
> time.series <- melt(time.series, id.vars = "id")
> pg <- ggplot(time.series, aes(id, value)) + geom_line() +
+     facet_grid(variable ~ ., scales = "free_y") + xlab("Time (Days)")
> print(pg)

chapter14-14_02_l_small.png chapter14-14_02_r_small.png

Figure 14.3

> library("flowViz")
> data(GvHD, package = "flowCore")

lattice

> pl <- densityplot(Visit ~ `FSC-H` | Patient, data = GvHD)
> print(pl)

ggplot2

It should be possible to produce a similar graph in ggplot2, however I was not able to figure out how to extract the relevant data from an object of class "flowSet".

chapter14-14_03_l_small.png

Figure 14.4

> library("hexbin")
> data(NHANES)

lattice

> pl <- hexbinplot(Hemoglobin ~ TIBC | Sex, data = NHANES,
+     aspect = 0.8)
> print(pl)

ggplot2

> pg <- ggplot(NHANES, aes(TIBC, Hemoglobin)) + geom_hex() +
+     facet_grid(~Sex) + opts(aspect.ratio = 0.8)
> print(pg)

chapter14-14_04_l_small.png chapter14-14_04_r_small.png

Figure 14.5

> data(Chem97, package = "mlmRev")

lattice

> panel.piechart <- function(x, y, labels = as.character(y),
+     edges = 200, radius = 0.8, clockwise = FALSE, init.angle = if (clockwise) 90 else 0,
+     density = NULL, angle = 45, col = superpose.polygon$col,
+     border = superpose.polygon$border, lty = superpose.polygon$lty,
+     ...) {
+     stopifnot(require("gridBase"))
+     superpose.polygon <- trellis.par.get("superpose.polygon")
+     opar <- par(no.readonly = TRUE)
+     on.exit(par(opar))
+     if (panel.number() > 1)
+         par(new = TRUE)
+     par(fig = gridFIG(), omi = c(0, 0, 0, 0), mai = c(0,
+         0, 0, 0))
+     pie(as.numeric(x), labels = labels, edges = edges,
+         radius = radius, clockwise = clockwise, init.angle = init.angle,
+         angle = angle, density = density, col = col,
+         border = border, lty = lty)
+ }
> piechart <- function(x, data = NULL, panel = "panel.piechart",
+     ...) {
+     ocall <- sys.call(sys.parent())
+     ocall[[1]] <- quote(piechart)
+     ccall <- match.call()
+     ccall$data <- data
+     ccall$panel <- panel
+     ccall$default.scales <- list(draw = FALSE)
+     ccall[[1]] <- quote(lattice::barchart)
+     ans <- eval.parent(ccall)
+     ans$call <- ocall
+     ans
+ }
> pl <- piechart(VADeaths, groups = FALSE, xlab = "")
> print(pl)

ggplot2

> pg <- ggplot(as.data.frame.table(VADeaths), aes(x = factor(1),
+     y = Freq, fill = Var1)) + geom_bar(width = 1) + facet_wrap(~Var2,
+     scales = "free_y") + coord_polar(theta = "y")
> print(pg)

chapter14-14_05_l_small.png chapter14-14_05_r_small.png

To leave a comment for the author, please follow the link and comment on his blog: Learning R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Tags: , , , , , ,

Comments are closed.