Finding the midpoint when creating intervals

May 23, 2014
By

(This article was first published on Matt's Stats n stuff » R, and kindly contributed to R-bloggers)

Nothing ground breaking here. I was doing some work dividing data into deciles and then creating some plots. I couldn’t find an function to calculate this from cut, and I use cut quite a bit. So here we are.

midpoints <- function(x, dp=2){
lower <- as.numeric(gsub(“,.*”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
upper <- as.numeric(gsub(“.*,”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
return(round(lower+(upper-lower)/2, dp))
}

 

And in an example:

midpoints <- function(x, dp=2){
lower <- as.numeric(gsub(“,.*”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
upper <- as.numeric(gsub(“.*,”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
return(round(lower+(upper-lower)/2, dp))
}
mtcars$mpg
cut(mtcars$mpg, quantile(mtcars$mpg), include.lowest=T)
midpoints(cut(mtcars$mpg, quantile(mtcars$mpg), include.lowest=T))

Which looks like this:

> midpoints <- function(x, dp=2){
+   lower <- as.numeric(gsub(“,.*”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
+   upper <- as.numeric(gsub(“.*,”,””,gsub(“\\(|\\[|\\)|\\]“,””, x)))
+   return(round(lower+(upper-lower)/2, dp))
+ }
>
> mtcars$mpg
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4 14.7
[18] 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
> cut(mtcars$mpg, quantile(mtcars$mpg), include.lowest=T)
[1] (19.2,22.8] (19.2,22.8] (19.2,22.8] (19.2,22.8] (15.4,19.2] (15.4,19.2] [10.4,15.4]
[8] (22.8,33.9] (19.2,22.8] (15.4,19.2] (15.4,19.2] (15.4,19.2] (15.4,19.2] [10.4,15.4]
[15] [10.4,15.4] [10.4,15.4] [10.4,15.4] (22.8,33.9] (22.8,33.9] (22.8,33.9] (19.2,22.8]
[22] (15.4,19.2] [10.4,15.4] [10.4,15.4] (15.4,19.2] (22.8,33.9] (22.8,33.9] (22.8,33.9]
[29] (15.4,19.2] (19.2,22.8] [10.4,15.4] (19.2,22.8]
Levels: [10.4,15.4] (15.4,19.2] (19.2,22.8] (22.8,33.9]
> midpoints(cut(mtcars$mpg, quantile(mtcars$mpg), include.lowest=T))
[1] 21.00 21.00 21.00 21.00 17.30 17.30 12.90 28.35 21.00 17.30 17.30 17.30 17.30 12.90
[15] 12.90 12.90 12.90 28.35 28.35 28.35 21.00 17.30 12.90 12.90 17.30 28.35 28.35 28.35
[29] 17.30 21.00 12.90 21.00


To leave a comment for the author, please follow the link and comment on his blog: Matt's Stats n stuff » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...



If you got this far, why not subscribe for updates from the site? Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.