Consider a (stationary) autoregressive process, say of order 2, for some white noise with variance . Here is a code to generate such a process, > phi1=.25 > phi2=.7 > n=1000 > set.seed(1) > e=rnorm(n) > Z=rep(0,n) > for(t in 3:n) Z=phi1*Z+phi2*Z+e > Z=Z > n=length(Z) > plot(Z,type="l") Here, we have to estimate two sets of parameters: the autoregressive...